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AN AUTOMATED APPROACH TO VERY HIGH ORDER

AEROCOUSTIC COMPUTATIONS IN COMPLEX GEOMETRIES

Rodger W. Dyson and John W. Goodrich

National Aeronautics and Space Administration

Glenn Research Center

Cleveland, Ohio 44135

Abstract

Computational aeroacoustics requires efficient, high-resolution simulation tools. And for

smooth problems, this is best accomplished with very high order in space and time methods

on small stencils. But the complexity of highly accurate numerical methods can inhibit

their practical application, especially in irregular geometries. This complexity is reduced by

using a special form of Hermite divided-difference spatial interpolation on Cartesian grids,

and a Cauchy-Kowalewski recursion procedure for time advancement. In addition, a stencil

constraint tree reduces the complexity of interpolating grid points that are located near wall

boundaries. These procedures are used to automatically develop and implement very high

order methods (> 15) for solving the linearized Euler equations that can achieve less than one

grid point per wavelength resolution away from boundaries by including spatial derivatives

of the primitive variables at each grid point. The accuracy of stable surface treatments is

currently limited to 11 th order for grid aligned boundaries and to 2 "_ order for irregular

boundaries.

I. Introduction

Noise generation and propagation are difficult to simulate numerically for a variety of

well documented reasons, and require high-order numerical schemes) ,2 However, high-order

schemes can introduce a number of complications, such as:

1. Large stencils near boundaries, with either many fictitious grid points, or large one-

sided stencils, introduce programming complexity and numerical instability, a'4
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. tIigh order finite difference equations can require boundary treatments beyond the

physical conditions of the original problem, which can excite spurious waves and in-

stabilities. 5

3. Generation of high-order, smooth, body-fitted grids around complex configurations can

be di fficult. 6

4. High-order formulations can lack nonlinear robustness. 6

5. The general usefulness of high-order methods is limited by first order accurate shock

capturing, r

The approach described in this paper will focus on the first three issues. The fourth issue

is being investigated. 8 And the last issue may possibly be avoided by including the physical

viscosity and resoMng the steep gradients, _ but with very high resolution methods.

In addressing the first three concerns, we limit ourselves to wave propagation and scat-

tering problems governed by the linearized Euler equations. Previous studies point out the

advantages of high order methods for acoustical propagation. _°-15 Many methods in general

use stop at 4 th order accuracy for time dependent problems since they use !Runge-Kutta

methods. High-order Runge-Kutta methods become notoriously difficult to derive because

the number of nonlinear order conditions that need to be solved grows exponentially (i.e., a

12 °' order method has 7813 nonlinear order conditions). _6-21 Tile advantages of using Runge-

Kutta methods at orders less than 6 are commonly cited as flexibility, large stability limits,

and ease of programming22 The practical limit on their order has been an impediment to

the analysis of their use in high order approaches for time dependent acoustic applications. 2a

In this paper we use a series of explicit, local, high order methods which have tile same

order of accuracy inspace as in time. 24'25 These methods use Hermite interpolation on sten-

cils that are two points wide, and a Cauchy-Kowalewski recursive procedure 26 for obtaining

time derivatives from the space derivatives of the interpolant. The time derivatives are then

used to advance the primitive variables and their spatial derivatives in time with a Taylor

series expansion. This general approach is called the Modified Expansion Solution Approx-

imation (MESA) method, it This method can be used to derive and implement algorithms

with arbitrarily high orders of accuracy in multiple space dimensions if their complexity is

properly managed and the computer's floating point precision is sufficiently high. 2r

The complex task of developing and coding a multidimensional interpolant for each MESA

scheme can be eliminated using the tensor product 2s of a new divided-difference form of

Hermitian spatial interpolation on a two point steneilY And the task of obtaining time
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derivativeswith Cauchy-Kowalewskirecursion26canbe implementedby unrolling the recur-

sion.29With thesetechniques,very high order MESA schelnesmay be implemented using

only a fewpagesof codeandtheir accuracymay beadjustedby merelychangingloopindices,

not tile code. 27 This in turn enables local solution adaptive order changes at each time step.

Most unsteady flow simulators using Cartesian grids in complex geometries are based

on a finite volume approach 3° with the exception of the work by Kurbatskii and Tam, 31

which specifically investigates acoustic scattering using a 4 th order accurate in time finite

difference approach. In their work, curved surfaces are approximated with linear segments

and ghost points are used to enforce boundary conditions; All of which incurred a fair amount

of programming complexity to implement. 31

The approach presented here, however, does not need to approximate the geometry and

the programming task is completed automatically using computer algebra 29 in a manner sim-

ilar to the works of Wirth 32 and Steinberg. 33 This is accomplished by viewing the boundary

conditions as applying uniformly in time throughout the boundary surface. The boundary

conditions can be differentiated in the surface and in time, and the governing equations can

be used to obtain an infinite number of constraints in the boundary. 4 And a stencil con-

straint tree is used to simplify the task of symbolically imposing these high order stlrface

boundary conditions. 29

With these techniques, the accuracy of interior propagation seems limited only by the

floating point precision available. However, we stably attained only eleventh order accuracy

for acoustic scattering in a box with sides that are aligned to the grid, and we attained only

second order accuracy in more general cases. These limits are due to poorly conditioned

matrix systems and numerical instability. However, these effects are dependent upon the

choice of boundary conditions and require further study as will be shown.

The objective of this paper is to present and validate a new approach to aeroacoustic

computations in complex geometries that has the potential to fully utilize the precision of

today's computers. A common theme in this paper will be the many advantages of using

a two-point wide stencil which include very high resolution, solution adaptability, and CFL

stability near boundaries. One of the more intriguing results to be presented here is the

possibility of subgrid scale resolution using solution adaptable algorithms.

II. Governing Equations

We will demonstrate this new approach by solving the linearized Euler equations in a

uniform mean flow field with mean velocity, ]_7[, perturbation velocity, if, pressure, p, and

Cartesian coordinates xi. We assume the initial conditions are known and that no additional
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sources are present. The conservation of niomentum and energy equations are:

cguj O u.j Op _ 0

Op Op O Ll___Z;_
0--7+ + Ozj - o

(1)

and are nondimensionalized with respect to the following scales, length scale L, velocity scale

c (sound speed), time scale L/c, density scale P0 ( ambient density), pressure scale poc 2. Also

note that the continuity equation is not included since it is not necessary for calculating the

acoustic response.

We will use 2s + 1 order explicit MESA methods, where s can be any nonnegative integer.

We will use only two-point stencils, where each grid point contains the primitive solution

variables p and m and their spatial derivatives (Hermitian data), for a total of 3(s + 1) 2 or

4(s + 1) 3 terms per grid point in two or three spatial dimensions, respectively.

III. Grid Classification

Generally, we are interested in simulating the acoustical scattering from objects that are

defined l)arametrically, and which are superimposed on a uniform Cartesian grid, as shown

in Fig. 1 for a cascade of three airfoils. Notice each grid point is labeled with a closed circle,

an _,pen circle, or the letter "B" and represent an interior, a fill, or a boundary grid point

respe¢'tivelv. In the figure the assumed stencil size is three points per dimension and a fill

grist l_,iltt is simply one in which one of its neighboring grid points is either on or beyond

tt, _ 1.,lm(tary. It is referred to as a fill since that grid point cannot be computed directly and

n('e_t._ t,, I)(' "filled" with data. If none of the neighboring grid points is on or beyond the

bom,tm'y then it is classified as an interior grid point and can be computed normally. All

otl,'r gri¢t l)¢fints are considered boundary points and are not needed since ghost grid points

alx' li_Jl IIS('(I.

Grill l),fint classification proceeds by first labeling all grid points as boundary type, and

thel_ fin_ting the interior and fill type grid points with a simple recursive procedure. The

pro('_'dur_' (h,termines if any neighboring grid points are boundary points by checking if the

surface of any object intersects the imaginary line joining the center point to its neigh-

bor. Since we are using a finite-difference method we need to check only for line-to-surface

intersections, which is much simpler than determining the surface-to-surface intersections

necessary if a finite-volume method is used. If there is no intersection, then the current grid

point is a fill point and recursion stops. Otherwise it is an interior point and the procedure

is called again, but starting with the neighboring grid points.
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IV. Advancing the Solution using MESA

With the uniform Cartesian gri(t points correctly labeled and the initial data assigned to

all the interior and fill grid points, the next step is to advance the solution in time. Since

interior grid points and their stencils are completely contained within the computational do-

main, they will be advanced directly using an efficient form of the MESA schelnes. However,

since a fill point's stencil reaches outside the computational domain field, its data will be

obtained by spatial interpolation. At each time step, every grid point is first treated as an

interior point to simplify the looping structure for efficient vector and parallel operations,

and then tile relatively few fill points are recomputed using interpolation.

Advancing tile interior points with MESA is a three step process. The spatial deriva-

tives at the center of the stencil are approximated using spatial interpolation, the spatial

derivatives are converted to time derivatives, and the sohition is advanced in time with a

Taylor series. The MESA scheme a4 is a general approach to developing high order numerical

schemes, but for this work we are only interested in methods with stencils that are two

grid points wide in all space dimensions because they enable arbitrarily high order spatial

interpolation with no decrease in CFL stability bounds near a boundary.

These two-point stencil schemes are numerically stable only when a staggered grid is

used at each time step 34 as depicted in Fig. 2 for a two-dimensional stencil. The locations

marked with "X"s in the figure are advanced first using the 2 x 2 stencils centered about

each "X". Next, the Hermitian data now stored at the "X" locations are used as initial data

to advance the sohition to the center as indicated by the large dot in the figure. Staggering

the grid has the same effect as applying the MESA scheme to the entire 3 x 3 stencil in the

figure and then adding artificial dissipation. It is however, more efficient to stagger the grid

because neighboring grid points will reuse the data at the "X" locations in the figure. In

two-dimensions this staggered grid procedure is numerically stable if."a4

At 1

A = A--_ -< 1 + max{lM_ 1, IM_I}" (2)

A. Hermitian Derivative Approximation

The MESA scheme requires an approximation to the solution of the primitive variables

(p and ui) and their spatial derivatives at the center of each stencil. Let the flmction, f(x,y),

be an approximation of one of the primitive variables from Eqs. (1) and define its origin

to be at the center of each two-point stencil shown in Fig. 3. Then in two-dimensions the

following data must be approximated once for each primitive variable (f(x,y)=p(x,y), u(x,y),
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,,(x,y))-

O"+bf(O'O) V (3)
O:r" Oy b

On a Cartesian grid these approximations can be found using tensor product interpola-

tion 2s in two or three dimensions if the interpolant:

2s+l 2s+l

f(*,y) = X Z c {/S
i-=O j=O

(4)

with its origin at stencil center is used with a 2s + 1 order method and if the following data

is available at each grid point:

O"+bf(:r'Y) g a,b'a,b=O, 1,2,...,s (5)
O:r'*Oy b

Determining the Ci/j = (1--_°'+J!(<'_!) terms in the two-dimensional interpolant (Eq. 4), \i!j!] Ox'ya

for very high order methods is very difficult and inefficient unless it is reduced to a series

of one-dimensional interpolations by using tensor products. Briefly, this is accomplished by

performing one-dimensional interpolations of the form: 2r

2s+l

f(x) = Z Cf x_ (6)
i=0

It is then possible to interpolate in the x direction, using the data on the grid points, the

following two sets of data for Y=Y0 and y = y_"

(_) Oi+5f(x=O,Y)gi, j i=0,1,2,...,2s+1• O,ciOyj :j = O, 1,.. , s
(7)

Then this data is used to interpolate in the y-direction using the following one-dimensional

shape flmction:
2s+1

f(x=O,v)= E cry 2 (8)
j=O

Once the Cj / terms are determined, they provide the data shown in Eq. (3):

cf = (+) Oi+j f(x = O'y = O)OxiOyj
(9)
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The one-dimensional shape flmctions (Eq. (6) and Eq. (8)) can be directly solved using

computer algebra (Grgebner Bases) :8 to create algebraic expressions for each C f term for up

to approxin:ately 30 °' order methods. However, this results in lengthy, inefficient expressions

that limit the accuracy and prevent instantaneous accuracy changes necessary for resolving

varying wavelength scales. A better way is to use Hermitian divided-differences which will

create the equivalent one-dimensional shape function (Newton's interpolatory formula): 35

f(x) =

2(s+:)-:

?_ 0,,_(x- ._0)_+:(x-x:)_-(_+:)
i---s+l

$

+ Z Q_,_(x- .¢0)_
i-=0

(_0)

where the Qi,i are the traditional Hermitian divided differences from the tableau (shown in

Fig. 4) which are given by:

Do[Do[

Qi,j -= oxJ ,

= ().,) ,
,{j,O,i}]

,{/,0, s}];

Do[Do[

(Q, _-:-Qi-:4-:)
(_, i,j : Ax

,{j,i-s,i}]

, {i,_ + 1,2, _+ 1}];

Derivatives Algebraically Evaluated

It is not enough to simply find Newton's interpolatory fornmla, Eq. (10), since we need

to approximate p, u, and v and their spatial derivatives at the stencil center. This would

ordinarily require differentiating Newton's Eq. (10) using computer algebra. By the product

rule of differentiation, Newton's formula will double in size after each differentiation, and

a 50 th order MESA scheme would need a Newton's formula of approximately 25o _ 10:6

terms. This issue is eliminated by the following result which is applicable only to two-point

stencilsY

od*f(x = 0) 2,+:

O:cdz = Z Qi,i Zi,dx, (11)
i=dx

NASA/TM--2000-210378 7



where the flmction Zi,& is independent of space and time, and can be computed simply as

follows:

Do[Do[
i!

zi,_x- (i - d:_-)!(-z°)(_-a*)
, {,;,d.,q], {&,O,(2_+ 1)}]

Do[Do[

Zi,d.'r

ex dx!

Z((d._ ,.)!.,.!(--Xo)(S+l-r)(--:_)(_-_-_-_'_+').
r----0

VI_*-_-_[i - (s + I)-e],
e--O

H_-_.-_o[3+ 1- k])

,{,i,_ + 1,2_+ 1}],{d., 0, (2_+ 1)}]

(12)

(13)

With these developments it is now possible to efficiently approximate all solution variables

and their derivatives at the center of a two-point stencil to any level of accuracy with only a

page of code. Since these explicit forms are completely algebraic it is possible to dynamically

adapt the accuracy of the approximation to the solution evolution.

B. Time Evolution

To fully utilize the arbitrarily high order accuracy in space that is possible on two-point

stencils, it is necessary to achieve similar accuracy in time; This can be accomplished with the

MESA method. This method uses the governing equations, Eqs. (1), to convert the recently

approximated spatial derivatives to mixed space-time derivatives in a manner reminiscent of

the Lax-Wendroff approach a6 by differentiating the following equations in space and time:

Ouj - (M_Ou,j--_-= -_/x/+ . ) (14)

oj,= _(<op +
ot " ux_ _xj )

The mixed space-time derivatives are then used in modified series expansions with local

coordinates about the center of the interpolation stencil at the current time level. For two-

NASA/TM--2000-210378 8



dimensional problems,the following seriesare used,with O = 2.2' + 1"

o o 2(0)

_(x,_,O = Z Z E cS,k-_'y_
i=0 j--0 k---0

o o 2(0)

,,(x,y,t) = E E E c_y'Y t_
i--O j--O k=O

o o 2(0)

,,(x,_,O = E E E cti_,.¢Y_
i=0 j--0 k=0

(15)

c,{j,,= (_)
o_+j+k f(z=o.V=o,t=o )where

Ox i Oy_ ot k

The variables p, u, and v, and their spatial derivatives, are then advanced to the next

time step by evahtating Eq. (15) and its spatial derivatives with (x = 0, y = 0, t = At), as

follows:

Oa+bp(O,O, '.X/) 2(o)
= (a.b.)C.,b,_2_t

Oxayb E _ _ P , k
k=O

O_+bu(O, O, _t) 2(o)

o:_.,,y_ = E (a!b!)c:,,,,,_-s_k
k=O

0"+%(0, 0, _t) 2(o)
= (a.b.)C_,b,eAt

Oxayb E 1I v _ k
k=O

(16)

By unrolling the Cauchy-Kowalewski recursion in Eq. 14, we can quickly express the

mixed space-time derivatives C_,b,_, C_,b,_., and C.Vb,k in Eq. (16) in terms of the space deriva.

tires C_,_, 0, C_ib, 0' and O.'b,o, which were approximated at the stencil center in the last section.

The following loop efficiently unrolls the recursion: 29

Do[Do[Do[

,_,= a + 1;i) = b+ 1;k = k- 1

CPa,b,k _--"

p tl
(-((a), (_r_• cL, k+ Q,_,_))-

(;) • (1%• c_ _+ c2'bs))/t,.a,b,k

(17)
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b,k z

(- ((g')* ;¢ *Q_s) -
p

(a) • (G,__+ ;r_•QL,b)/k

(- ((_,)• (c:._._:+i% • c_._,._.))-

(a)• ;_, • Q'b._)/k
a,o,0],,_,0,0], k,1,2• 0];

This simple form applies to unifi)rm mean flow, but for general flows Cauchy-I(owalewski

recursion becomes complicated. 26 For example, ::sing Eq. (14) to calculate the mixed space-

time derivative, C_0,:, when the mean flow varies in space, results in the expression:

02U . O]_[i (_gU 0211. 02p

OtO"-'-_z= ( _ Oxi + :'Ui_x_ + _.r 2) (18)

which requires knowing the derivatives of the mean flow, _ and higher order derivatives ofOx _

Eq. (18) require higher order derivatives of the mean flow as well. Getting this information

may require computing the mean flow using a very high order MESA method as well and

the equations will grow exponentially unless a simple form analogous to Eq. (11) is found.

Despite these complications, Cauchy-Kowalewski recursion, when automated with computer

algebra tools, 29 can produce numerical schemes with higher order than is currently possible

with Runge-Kutta methods.

V. Including Wall Boundaries

The procedure for advancing the interior grid points is not applicable to fill grid points

near boundaries since part of their stencil is on or within a solid object. We obtain data

for these points at each time step with a Hermite interpolant that is Consistent with the

wall boundary conditions, and which uses the nearby solution at interior grid points. This

Hermite interpolant is equivalent to the interpolant used for the interior grid points in Eq. (4),

but is written as:

f(x, _,)=
1 s

i,j=O dx,dy=O

Od_+d_f (zi, y_)
Ozdx Oydy

(19)

where the tIx,d_(X) and Hy_,dy(y) terms are 2s + 1 order polynomials in x and y respectively.

Since the data at the interior grid points is known, this Hermite form of the interpolant has

NASA/TM--2000-2 ! 0378 10



tile advantage of reducing the number of unknown coefficients, C[4, in Eq. (4), to only tile

unknown data which is required at the fill points, °_'+d_/(*"Y_)
Ox dr oyd_ •

Each shaded box in Fig. 5 represents an interpolation region used for interpolating the

values at the fill points in each box. The boundary conditions are imposed upon the shape

fimction for each box at the locations on the surface intersected by the arrows. The numbers

inside each box show the sequence in which the fill points are interpolated.

A. Choice of Wall Boundary Conditions

Each fill point on the grid provides (s + 1) 2 unknowns in Eq. (19), so that an equivalent

number of constraint equations must be obtained. An infinite number of constraints can be

obtained by exploiting the fact that the physical boundary conditions apply uniformly in

time everywhere in the boundary/ For Eqs. (1), the inviscid boundary condition is that the

normal component of velocity is zero at a surface,

(2o)

Since vorticity is convected with the mean flow, we also assume in this work that there is no

vorticity at a surface,
Ov Ou

co-- =0. (21)
0x 0_/

For flat walls, the boundary conditions for this case are:

02n+l+Tp
-- 0

Ofl2.+ *oc-r

02n+Tl;
-- O,

O_2.0_-w

02n+l+Tl, r
-- 0

O_pn+ l Oq'Y

Vr_, T •

c (0,1, 2,...) (22)

where 1 _"is the magnitude of the perturbation velocity vector with velocity components u and

v in the Cartesian x and y-axis directions, p is the scalar pressure, 7) is the unit vector normal

to the wall surface direction, "_ is the Ulfit vector tangent to the wall boundary direction, 15

is the velocity tangential to the wall, and 1.;_ is the velocity normal to the wall.

Selecting which set of boundary conditions to use and where to apply them on the

boundary can be simplified by considering the general form of the normal and tangential

NASA/TM--2000-,. 10378 I 1



derivatives of f(x,y):a7

07"+rf (a:,y)
8flNO_ -T

0 \Nz 0

(23)

If each operator is expressed in its binomial series form and the order of smmnation rear-

ranged, then by substituting Eq. (19) into Eq. (23) the following form is derived:

ON+T f(:c, y)

007¢ ¢-T

] s Y od:r+dYf(xi, yj)

i,j=0 dx,dy=O

(24)

where Y dx,dy,xi,Yj is defined by:

}_dx,dy,xi,yj

a=O b=O ""

(25)

b) = (26)

N!T!
(N_b)!b!(T_a)!a!'_j 11zN +a-b l]yT-a+b (-- 1 ) T-a

Since maintaining numerical stability for hyperbolic problems normally requires methods

that include all information from within the domain of dependence defined by the character-
O_"+r(H , H .

,, z , ,am Y,t "aY l

istic surfaces, as we want to select N = 2n + 1 and T so that o.,,_'_+r-o-_,oy_+b in Eq. (25) never

becomes zero, because this would exclude some of the influence of neighboring grid points.

This is accomplished by choosing (r_ • n = 0, 1,2, ..., s) and (r • T = 0, 1, 2, ..., 2(s - n)) for

the first and third boundary conditions in Eq. (22). Those conditions will produce linearly

consistent systems that can be solved to determine the interpolant, or equivalently, the data

required at the fill point. However, in the special case in which r/, = 0 or % = 0, we need

to use the different conditions (n • n = 0, 1,2, ..., s) and (T • T = 0, 1, 2, ..., s) to insure non-

singular matrix systems. This special case does not result in a loss of information because

the affected terms in Eq. (25) are supposed to be zero. For example, a third order MESA

method would use the following pressure boundary conditions at each location indicated by

the arrows in Fig. 5:

Op = o, 02p -0, Op -0, Oap - O (27)
0(1 0 0¢- OOO -2 &)a

NASA/TM--2000-210378 12



Tile same method applied to the special case shown in Fig. 6 would use the conditions:

0__pp= 0, 02]) - 0, 03`/3 - 0, (_4p _ 0 (28)
O0 0_0_- Oil a 0_3_ -

B. Symbolic Solution

The shape fimction for each fill point can now be soh'ed using the boundary conditions

and the known interior data in each shaded region of Fig. 5. The boundary condition

Eqs. (22) are applied to the shape flmction Eq. (24) to solve for the unknown data at the

fill points. This linear system of (s + 1) 2 equations per fill point may be written as:

M f= Nd (29)

where M and N are matrices whose elements are given by Y in Eq. (25), where fisdx,dy,x_ ,yj

a vector of the data needed for the fill points, and where c/is a vector of known data from

the interior points.

This system can be solved using any linear solver at each time step, but for high order

methods this becomes expensive and the matrices become ill-conditioned. A better approach

is to symbolically solve this system once to form the algebraic solution:

f= M-1Nd (30)

where M and N are numerical matrices dependent upon the geolnetry but the vectors are

symbolic. This results in an algebraic expression for each fill point as a linear combination of

the interior grid point data. It is then a simple matter to evaluate the fill points by updating

the vector d at each time step and evaluating their linear combinations.

This approach worked well for up to 11 th order accuracy in two dimensions for the case

(shown in Fig. 6) of no mean convection in an unrotated box that is aligned with the co-

ordinate axes. For higher order algorithms, the matrix M becomes ill-conditioned, and

finding its numerical inverse becomes difficult, inefficient, and unstable. Resorting to Gaus-

sian elimination would be more stable for high order cases, but the cost at each time step is

prohibitive.

VI. Stencil Constraint Tree

Instead of using a poorly conditioned numeric matrix M, its symbolic form can be in-

verted. There are actually only a relatively few symbolic matrices which need to be inverted

regardless of the geometry! These few cases can be found by using a new tree data struc-

ture, referred to as a Stencil Constraint Tree (SCT), which represents all possible stencil
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configurations. For example, in Fig. 7, all possible 3 × 3 stencil configurations are shown in

which:

• the top, center grid point is a "boundary" point (indicated by "B"),

• the center, center grid point is a "fill" point (hollow circles),

• and the bottom, center grid point is an "interior" point (filled in circles).

The stencil constraint tree (SCT) for the simple case of a 2 x 2 stencil which has an interior

grid point in its top-right location is shown in Fig. 8. It is constructed by propagating

symbolic constraints in a manner analogous to Waltz's symbolic constraint propagation

algorithm, a9

Once the tree is constructed, a particular stencil configuration is found by traversing the

SCT from top to t)ottom along any path and converting the branch labels using Figs. 9

and 10.: For example, the branch number 10 corresponds to position 4 and label 1 in Fig. 9

and represents an "interior" grid point that is located at the top right corner of the stencil. A

similar procedure is applicable to larger stencils as well. Notice that identifying a particular

n-point stencil using a SCT can be done in n2 or n a steps for two and three dimensional

stencils respectively instead of the 3'_=n 2 and 3nan a comparisons typically required using a

brute-force comparison of all stencil configurations.

A. Constructing the Tree

The most significant advantage of the SCT is it can reduce the number of symbolic

matrices fi'om Eq. (29) that need to be considered. This is accomplished by propagating

natural constraints during the construction of the tree. 29 Natural constraints are simply a

list of rules which are a natural consequence of the definitions of interior, fill, and boundary

grid points on a Cartesian grid. For example, some natural constraints which limit the set

of stencil configurations are:

1. An interior grid point is never adjacent to a boundary grid point and its converse,

2. And for two and three-point stencils, a fill grid point will always be adjacent to at least

one boundary point.

If the natural constraints are not enforced then the list of stencil configurations in Fig. 7

grows to 36 = 729 since only the middle column is defined. The advantages of enforcing

natural constraints increase with both spatial dimension and stencil size.
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B. Small Stencils Guarantee CFL Stability

These techniques can be applied to both of the 5 x 5 stencils shown in Fig. 11 to construct

their SCT. This SCT will represent all possible 5 x 5 stencils which can occur with a fill point

at its center. And we find that there are only 65 unique rotationally symmetric cases of 3 × 3

stencils centered about the fill point; 29 All other possible stencil configurations are simply

rotations of this core group! Note that we assume there will be at least one interior point

next to the fill point, otherwise that fill point is not needed as shown in the corners of Fig. 5.

As shown in Fig. 11, there will ahvays be a 3 x 3 stencil contained within the 5 x 5 stencil

that does not contain a boundary point and yet ahvays contains a fill point on its edge or

corner. This guarantees tile existence of a 3 x 3 stencil for each fill point in any geometry that

is not intersected by the surface geometry! Therefore, it will always be possible to expand

the stencil outward from each fill point to the surface where the boundary conditions are

imposed. This in turn guarantees that tile CFL stability criterion will be satisfied, since tile

domain of dependence for tile fill interpolant is increased from a standard stencil size.

This CFL guarantee is a property of two-point and three-point stencils in two or three

dimensions. Four-point stencils or larger will require smaller time steps near the boundary

and make it difficult to choose locations on the surface that guarantee a linearly consistent

svsf('ln ill Ee 1. (29).

VII. Mapping

All l,,_ssible 5 × 5 stencil configurations containing a fill point are known after the con-

str_wri,,l_ _,[ the SCT for the stencils in Fig. 11. This information is used to select locations

on rh,, l_,lNMary at which tile boundary conditions are enforced. A surface will always occur

b_,ru,,_l, _l lill point and a boundary point, so that even before we know exactly where the

sur[ac_, i.,,. w_' know in which direction to go to find the surface.

\\',, w,,_dd like to use the points on the surface that are closest to the interpolation

sWl,'il while, simultaneously insuring that never more than N locations are eollinear with

the, c_,,,r_linatc axes for each N-point interpolation stencil. These conditions maximize the

accuracy _,[ the interpolant and insure that the matrix M in Eq. (29) is nonsingular. One

such mapping is shown in Fig. 12 for the upper triangular part of the outlined $8 3 x 3 stencil

in Fig. l I. The degenerate cases occur because it is not guaranteed that a nearby surface

will be found using the mapping shown. These eases are usually not an issue in practice and

can be avoided by choosing alternate interpolation regions as in Fig. 13 or by constructing

the SCT for a larger stencil around the fill point in Fig. ] 1 and then choose a mapping with

this additional information.

hnplementing higher accuracy boundary conditions with this approach requires increasing
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the depth of Hermitian data at each grid point and increasing tile number of boundary

conditions used from Eq. (22), but the stencil size used for interpolation is never changed.

Therefore, we never need to remap the fill points to tile boundary and the CFL stability is

not affected.

A. Efficient Retrieval of Fill Point Solutions

Once all the stencil configurations are known and the direction in which to map each fill

point to the surface is found, then the symbolic form is known for every matrix M and N

in Eq. (29). Each of these systems may then be symbolically solved and their subsequent

solutions may be stored in the leaves of the SCT for fast retrieval later.

The leaves of the tree will contain algebraic solutions for every fill point in any geometrical

configuration. They can be used and reused many times without the need for solving Eq. (29)

again. For exanlple, if the walls are moving then the Cartesian grid points will need to be

retabeled, but the same SCT, mapping, and symbolic solutions can be used at each time

step to efficiently interpolate the data needed at each fill point.

VIII. Numerical Results

All of the following results solve the linearized Euler equations, Eqs. (1), in uniform mean

flow using the approaches previously described. This approach to developing very high order

methods was applied to both wave propagation and acoustic scattering problems in various

test geometries.

A. Acoustic Propagation

For mean convection velocity ,_[ in an open hi-periodic (tri-periodic) domain (for d=2 or

3 dimensions), the linearized Euler equations have the following analytical solution:

d d

p(.< t)= c, H &,,,._(.< 0 =-s,._G. H Sx, (a)
i---1 j_-_

j---1

where

G_ = cos(tEn-/i),

G= cos(_-tllff'll),

S'_, = sin (IE _-2i)

_E sin(_-tllff'll)

&_ = II_('ll

The properties of very high order methods were tested on this problem with mean ve-
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locity Jt[ = (1,1)and wavenumber l_" = (1,1), and the results were used to validate the

automatically generated codes. The methods were compared for" efficiency and resolution;

the results for up to 29 o' order accuracy (using 64-bit precision) are shown in Fig. 14. Notice

that higher-order methods perform better in each figure until machine precision is reached.

By increasing the wavenumber in Eq. (31) to IV = (II'_ _> 2, II_ _> 2), we also see that very

high order methods offer subgrid scale resolution as shown to the left of the ordinate axis at

the top of Fig. 14. Sinfilar results were found while soMng three-dimensional cases as well. z_

The resolution of the methods improves while using 128-bit precision as the accuracy

increases until about the 21 *t order for signals with 8 grid points per wavelength; This limit

varies with signal frequency. If the order is increased above this limit, then the resolution

of each signal degrades from roundoff errors which begin to dominate around 57 °' order

accuracy for signals with a wavelength of 8 grid points. However, by selecting wavenumber

IV = (16, 16) in Eq. (31), and by using 40 th - 60 #' order methods on a two-point stencil,

it is possible to resolve 4 wavelengths per grid point. Note that this is not a violation

of the Nyquist criterion 4_ since each grid point contains multiple data values for Hermite

interpolation.

For extremely high order methods, the convergence slope at the top of Fig. 14 is so

steep that essentially only a specific fi'equency is correctly resolved with finite precision

floating point hardware unless a method for detecting roundoff error is available. Fortunately,

roundoff error may be detected by checking the columns of the Hermite divided-difference

tableau in Fig. 4, which is used for the interpolation. The sum of colmnn j should equal the

difference of the first and last terms in column j-1. 2r'4° If roundoff error begins to occur,

simply stop constructing the tableau at that point and use the resulting lower order method.

This saves computational effort and enables the solution of a field containing widely varying

wavelengths.

B. Acoustic Scattering

With the exceptional qualities of very high order methods established for wave prop-

agation, the simulation of acoustic scattering from within a rotated box and a circle was

completed as shown in Fig. 15. An analytical solution to wave scattering within the rotated

box with no mean convection is:

p(x,v,t) = -cos(  t) cos( x) cos( y) (32)
cosQry)sin(v Tr t)sin( -z)

y,t) = (33)
cos( -x) sin(x/  -t)sin( -y)

v(x,y,t) = (34)
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where the coordinate system is aligned with the box. An analytical solution to wave scat-

tering within a circle with no mean convection is:

5Jo(A ) cos(At) (35)
= v'TJo(_) '

where A = 3.83171, Jo is the Bessel fimction of the first kind of order 0, and where polar

coordinates are used.

For the case of an unrotated box we found stable solutions with second, third, fifth,

seventh, ninth and eleventh order accuracy using boundary conditions from Eq. (22) with

(r_ : r_ = 0,1,2,...,s) and (T : T = 0,1,2,...,s) as shown in Fig. I7. Using the boundary

conditions in Eq. (22) with n, T = 0 we found stable 2 '_g order solutions for all box and

circle cases, regardless of the rotation angle. The first five plots in Fig. 16 correspond to box

rotation angles: 0, ,r ,_ •i-g, g, _, g, respectively. The last curve in the figure shows a 2 '_d order

method without wall boundaries.

C. Numerical Stability

In Fig. 18, both rotated boxes are identically solved with a 2 "d order method. The

sequence in which the fill points are interpolated in each box is switched as indicated by the

numbers in the center of each shaded region. The sequence used on the top box in the figure

is mmwrically stable while the sequence used for the box on the bottom is not. It was found

that few 2 ''d order methods, ordering regions by the number of fill points they contain from

fewest t4, most and then interpolating the fill points in that order was always stable for the

case.,, test¢,d. This is why most of the interior is shaded for the box cases in Fig. 15 compared

to th,, I,_,x¢,s in Fig. 18. But, clearly, there are multiple stable choices of shaded regions and

int,,rt_,lat ion sequences.

Rmher than relying on numerical experiments, an important next step is to use the

svnll,,,lic f_,rm in gq. (29), of which only a relatively few cases are possible, to perform a

COml_h'r,' stability analysis so that higher order conditions can be made reliably stable.

IX. Conclusion

Small stencils containing Hermitian data were found to possess key properties necessary

for developing exceptionally efficient, explicit algorithms of arbitrary formal accuracy in space

and time for scattering problems with arbitrary surface orientations. This is accomplished

by approximating spatial derivatives using a special form of two-point Hermitian divided-

difference spatial interpolation and an unrolled Cauchy-Kowalewski recursion procedure for

tilne advancement. A stencil constraint tree is used to find all possible stencil configurations

and their respectively well-posed boundary conditions so that grid points near arbitrarily
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oriented surfacesmay be interpolated. Computer algebrais then usedto find the symbolic

shapefunction for eachstencil configuration,and the stencilconstraint tree is usedto quickly

identify the correct interpolant for eachnear boundary grid point.

In spite of the developmentof simpleproceduresfor the time evolution at all grid points,
the Fortran application code of a very high order method is complicated,'so the task of

programming was automated using computer algebra procedures. Theseprocedureshave

successflfllyproduced: (1) stable, parallel 57_horder wavepropagationmethods in two and

threespatial dimensionswith periodic boundaryconditions; (2) stable2"a order methodsfor

scattering problemswith generalizedsurfaceboundary conditions in two spatial dimensions;

and (3) stable 11th order methodsfor scattering problemswith surfacesaligned to the grid

in two spatial dimensions.

The resolution and efficiency of these methods improve with order until the accuracy

exceedsthe limits of machineprecision. At thesevery high ordersof designaccuracy it is

necessaryto control roundoff error and a method for doing this is suggested.

The proceduresdiscussedhere provide a systematic method for quickly changing the

accuracyof both the interior propagation and wall boundary condition implementations to

suit flow conditions. And it wasshown that very high order methods (> I5) provide an

opportunity for subgrid scaleresolution.

These results demonstratethe potential value of very high accuracyin time as well as

in spacefor aeroacousticcalculations. But, a detailed stability analysisfor theseprocedures

remainsto be done for the generalizedhigh order surfaceconditions. And, a method for

unrolling nonlinearCauchy-Kowalewskirecursionneedsdevelopedto achievearbitrarily high
accuracyin time for nonlinearproblems.

Nonetheless,it is necessaryto useHermitian data for achievingvery high order solutions

becauseLagrangian stencils simply becometoo large. And since small stencils allow for a

very simple interpolation procedureof arbitrary accuracywhile maintaining CFL stability

near boundaries,future work will be devotedto exploiting them in substantial applications.
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Figure 7: All Possible $7 Stencil Configurations with Fill at Center : 16 Cases
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Figure 14: Resolution, Efficiency, and Memory Usage of higher-order methods
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Figure 15: Rotated Boxes and Circle Cases
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Figure 17: Unrotated Box Grid Resolution Studies
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Figure 18: Stable and Unstable Cases
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